

0277-5387(94)00474-9

THE CdCl₂/THIAMINE (VITAMIN B₁) SYSTEM: CRYSTAL STRUCTURE AND SPECTROSCOPIC PROPERTIES OF THE NEW COMPLEX *trans*-[Cd(THIAMINE)₂Cl₄]

JOSÉ S. CASAS,* ALFONSO CASTIÑEIRAS, MARÍA D. COUCE, AGUSTÍN SÁNCHEZ, JOSÉ SORDO and JOSÉ M^{*}. VARELA

Departamento de Química Inorgánica, Universidad de Santiago de Compostela, 15706 Santiago de Compostela (Galicia), Spain

(Received 21 September 1994; accepted 17 November 1994)

Abstract—The structure of the title compound was determined by X-ray diffraction. The cadmium atom is coordinated to the four chlorine ligands and to two N(1')-bound thiamines in S conformation that occupy *trans* positions in a distorted octahedral kernel. The structural details and the solid state (CP/MAS ¹³C and ¹¹³Cd) and solution (¹³C, ¹⁵N and ¹¹³Cd) NMR spectroscopic properties of the complex are compared with those of previously isolated cadmium(II)/thiamine compounds.

Cadmium has played an important role in the understanding of the coordination chemistry of vitamin B_1 (thiamine, T⁺). The compound [CdTCl₃]. 0.6H₂O was the first 'true' thiamine complex (that is, a compound containing thiamine-metal bonds) to be studied by X-ray diffraction.¹ This study showed a trichlorocadmate(II) anion bound to the thiamine cation via its N(1') pyrimidine atom. Later, an X-ray diffraction study of the complex $[CdT(SCN)_3]$ showed that in this case the metal is bound to the vitamin through the $O(5\gamma)$ atom belonging to the hydroxyethyl side chain of the thiazolium ring.² More recently,³ we prepared $[CdTCl_3]_2 \cdot 2H_2O$, in which two $N(1'),O(5\gamma)$ bonded thiamines bridge between two cadmium atoms in a centrosymmetric dimer. During this work with CdCl₂/thiamine in water, we also isolated a solid with a formula showing it to be either a new complex $[CdT_2Cl_4]$ or the salt $(T)_2[CdCl_4]$. In this paper we report X-ray diffraction data showing that this compound is a true complex with two thiamines bound to the cadmium atom via the N(1') pyrimidine atoms. This is, as far as we know, the first 1:2 metal: thiamine complex ratio studied by Xray diffraction.

EXPERIMENTAL

Crystals of $[CdT_2Cl_4]$ were obtained as described elsewhere.³ Intensity data for a colourless prismatic crystal with dimensions $0.15 \times 0.25 \times 0.25$ mm were obtained at room temperature (293 K) on an Enraf-Nonius CAD4 diffractometer using graphite monochromatized Mo-Ka radiation ($\lambda = 0.71073$ Å). The $\omega/2\theta$ scan technique was employed to measure the intensities of 4718 reflections up to a maximum Bragg angle of 30° . Cell parameters were refined by a least-squares procedure from the setting angles of 25 reflections $(6.4 \le \theta \le 16.8^\circ)$.^{4a} No decomposition of the crystal occurred during data collection. Corrections were applied for Lorenz and polarization effects, and for absorption ($\mu = 1.04$ mm⁻¹).^{4b} A total of 3355 unique reflections with $I \ge 3\sigma(I)$ were used in further calculations. The structure was solved by direct methods^{4c} and refined by a full-matrix least-squares procedure based on $F.^{4a}$ Non-hydrogen atoms were refined with anisotropic displacement parameters. Seventeen hydrogen atoms were located by difference Fourier synthesis and refined with B_{iso} fixed at 4.0 Å², the remainder were placed in calculated positions (C-H = 0.95 Å) and added to the structure factor calculations with fixed isotropic B values ($B_{iso} = 4.0$ $Å^2$), but their positions were not refined. With the weighting scheme $\omega = 1/\sigma^2(F)$, the refinement pro-

^{*}Author to whom correspondence should be addressed.

ceeded smoothly to convergence with a maximum Δ/σ of 0.57 for R = 0.035, $R_w = 0.037$ and goodness-of-fit (GOF) = 0.961 (368 variables). The secondary extinction coefficient refined to $g = 3.155 \times 10^{-7} \{F_c = F_c/[1 + g(F_c)^2 Lp]\}$. Analysis of the variance showed no special features, and the maximum and minimum residual electron density peaks in the final difference map were +0.54 and -0.50 e Å⁻³, respectively. Atomic scattering factors and anomalous dispersion corrections for all atoms were taken from a standard source.^{4d} Crystal data are listed in Table 1.

NMR experiments were performed as described elsewhere.³

RESULTS AND DISCUSSION

Crystal structure

Bond lengths and angles around the cadmium atom are listed in Table 2 together with other relevant structural data. The structure of the complex is shown in Fig. 1.

Crystals of $[CdT_2Cl_4]$ consist of discrete units whose packing is governed by intermolecular hydrogen bonds (Fig. 2). The donor atoms surrounding the cadmium atom are located at the vertices of a distorted octahedron, with the two thiamines in *trans* position (Fig. 1).

The Cd—Cl and Cd—N distances in the three cadmium(II)-thiamine complexes so far isolated and in the cadmium(II)-thiaminium salt (HT) [CdCl₄] \cdot H₂O⁵ are compared in Table 3. As might be expected, the Cd—Cl distance increases as the coordination number of the metal increases; in [CdT₂Cl₄] it lies in the range observed for other hexacoordinate chlorocadmium complexes.⁶ The Cd—N bond, however, is longer in [CdTCl₃]².

Table 1. Crystal data of [CdT₂Cl₄]

$C_{24}H_{34}CdCl_4N_8O_2S_2$
784.95
Triclinic
PĪ
9.555(1)
10.622(1)
8.910 (2)
98.16(1)
112.17 (1)
66.55(1)
768.2 (2)
1
1.697
398

 $2H_2O$ than in [CdT₂Cl₄], probably due to the thiamine being bidentate in the former complex.

The four chloride ligands adopt a planar arrangement ($\chi^2 = 60$) with the cadmium atom 0.06 Å above this plane. The best pyrimidine ring planes approximately bisect Cl—Cd—Cl angles but form dihedral angles of *ca* 78 (thiamine 1) and 76° (thiamine 2) with the equatorial plane, so that thiamine 2 is tilted towards Cl(1) and Cl(2) and thiamine 1 towards Cl(3) and Cl(4).

Other structural characteristics of T⁺ are listed in Table 2. The values of Φ_{T} and Φ_{P} indicate that thiamine is in the less common S conformation,⁷ but the non-bonding Cl····Cl distances [average 3.7(4) Å] are shorter than those observed in other thiamine compounds with S conformation (see ref. 3 and refs therein). Unlike most well-characterized thiamine derivatives, [CdT₂Cl₄] has clearly nonplanar pyrimidine (P) and thiazolium (T) rings $(\chi^2 = 180 \text{ and } 97 \text{ for P and T, respectively, in thi-}$ amine 1, and 622 and 560 in thiamine 2). Though the hydroxyl hydrogen atom was not located, the O—Cl distances $[O(15\gamma)$ —Cl(2) = 3.19(1) Å, $O(25\gamma)$ —Cl(3) = 3.13(1) Å] suggest the presence of two intramolecular hydrogen bonds. The values of the torsion angles $\Phi_{5\alpha}$ and $\Phi_{5\beta}$ (Table 2) prevent any significant intramolecular electrostatic link between the electronegative $O(5\gamma)$ and the electron-deficient S atom.⁸ In fact, the O—S distances are close to or above the sum of the van der Waals radii.⁹

Packing along the *a* axis is largely governed by intermolecular hydrogen bonds between thiamine-NH₂ groups and *cis* pairs of chloride ligands belonging to neighbouring $[CdT_2Cl_4]$ units (Fig. 2). The thiazolium sulphur atoms have no close contacts, the closest atoms [Cl(2) for S(1) and Cl(3) for S(2)]lying at distances greater than the sum of the van der Waals radii.⁹

NMR study

Table 4 lists the chief solid state ($^{13}C CP/MAS$) and solution (^{13}C , ^{15}N and ^{113}Cd) NMR data. There are no significant differences between the ^{13}C CP/MAS NMR data for [CdT₂Cl₄] and [CdTCl₃]₂. 2H₂O³ even though thiamine has different conformations in the two complexes (S and F, respectively). The ^{13}C NMR spectra in D₂O solution are also very similar. The only noteworthy difference between the ^{15}N NMR spectra of the two compounds is that the N(1') signal lies at slightly lower frequencies in the 1 : 2 complex, probably because in this compound the inductive influence of the metal is drawn on by two pyrimidine rings, resulting in less deshielding of each nitrogen.

The ¹¹³Cd isotropic chemical shift of $[CdT_2Cl_4]$

Bond distances (Å)			
Cd-Cl(1)	2.561 (2)	Cd—Cl(4)	2.590(2)
Cd-Cl(2)	2.713(1)	Cd—N(11')	2.475 (6)
Cd—Cl(3)	2.719(1)	Cd—N(21')	2.418 (6)
Bond angles (°)			
Cl(1)— Cd — $Cl(2)$	88.82(5)	Cl(2)—Cd—N(21')	95.2 (2)
Cl(1)— Cd — $Cl(3)$	91.54 (5)	Cl(3)— Cd — $Cl(4)$	88.67(6)
Cl(1)— Cd — $Cl(4)$	179.41 (7)	Cl(3)CdN(11')	94.9(1)
Cl(1)— Cd — $N(11')$	93.7(1)	Cl(3)— Cd — $N(21')$	84.7 (2)
Cl(1)— Cd — $N(21')$	88.1(1)	Cl(4)CdN(11')	85.8(1)
Cl(2)— Cd — $Cl(3)$	179.63 (6)	Cl(4)— Cd — $N(21')$	92.4(1)
Cl(2)— Cd — $Cl(4)$	90.97 (5)	N(11')—Cd— $N(21')$	178.2 (2)
Cl(2)—Cd—N(11')	85.2(1)		
Torsion angles			
Thiamine 1	$\Phi_{\rm T} = -92.3$	$\Phi_{\mathbf{P}} = 171.1, \Phi_{\mathbf{S}_{\mathbf{R}}} = 93.5, \Phi_{\mathbf{S}_{\mathbf{R}}}$	= -71.8
Thiamine 2	$\Phi_{\rm T} = 93.4, \Phi_{\rm P}$	$= 179.1, \Phi_{sa} = -76.0, \Phi_{sa}$	= 54.1

Table 2. Structural parameters of [CdT₂Cl₄]

Intermolecular hydrogen bonding

$A - H \cdots B$	A—H (Å)	$\mathbf{H}\cdots\mathbf{B}\left(\mathbf{\mathring{A}}\right)$	$A\cdots B~(\text{\AA})$	A—H—B (°)
$\frac{1}{N(14'\alpha)} H(14'\alpha 1) - CI(1^{i})^{\alpha}$	0.88(8)	2 44 (9)	3 268 (5)	157
$N(14'\alpha)$ — $H(14'\alpha 2)$ — $Cl(2^i)^a$	0.00(0)	2.55 (14)	3.196 (8)	139
$ \begin{array}{l} N(24'\alpha) & - H(24'\alpha 1) - Cl(4^{ii})^a \\ N(24'\alpha) & - H(24'\alpha 2) - Cl(3^{ii})^a \end{array} $	0.87 (8)	2.49 (9) 2.46 (13)	3.286 (5) 3.276 (8)	151 140

^aSymmetry codes: i = x + 1, y, z; ii = x - 1, y, z.

Fig. 1. SCHAKAL¹³ view of $[CdT_2Cl_4]$, with atomic numbering scheme.

Fig. 2. Partial view of the crystal packing, showing the intermolecular hydrogen bonds along the *a* axis.

	CdCl	CN^a	Cd-N(l')	Ref.
$(HT)[CdCl_4] \cdot H_2O$	2.465(1)	4		5
	2.453 (1)			
	2.432(1)			
	2.461 (1)			
	2.453 (av.)			
[CdTCl ₃] • 0.6H ₂ O	2.441 (1)	4	2.239 (2)	1
	2.451 (1)			
	2.457 (1)			
	2.451 (av.)			
$[CdTCl_3]_2 \cdot 2H_2O$	2.435 (2)	5	2.264 (5)	3
	2.567 (2)			
	2.421 (2)			
	2.474 (av.)			
$[CdT_2Cl_4]$	2.561 (2)	6	2.475 (6)	This work
	2.713(1)		2.418(6)	
	2.719(1)		.,	
	2.590(1)		2.447 (av.)	
	2.646 (av.)		· · ·	

Table 3. Cd-Cl and Cd-N distances in the cadmium(II)/thiamine compounds

^{*a*} CN = coordination number.

in the solid state is considerably smaller than those of $(Et_4N)_2[CdCl_4]$ (483 ppm¹⁰) or $(HT)[CdCl_4] \cdot$ H₂O (451 ppm¹¹), as is only to be expected ¹⁰ from the increase in coordination number from four to six. In D₂O solution the Cd nuclide in $[CdT_2Cl_4]$ is

slightly more deshielded than in $[CdTCl_3]_2 \cdot 2H_2O$ (74.7 ppm³), probably because the additional N and Cl ligands of the former have a greater deshielding effect¹² than the oxygen ligands (from chemical exchange with solvent³) of the latter, and the differ-

Table 4. ¹³C, ¹⁵N and ¹¹³Cd NMR chemical shifts of [CdT₂Cl₄]^{*a*}

	C(2')	C(4′)	C(2)	C(6')	C(4)	C(5)	C(5′)	C(5β)	C(3,5')	C(5a)	C(2'α)	C(4α)
D_2O/H_2O solution $(1:2)^b$	169.0	162.0	154.0 153.8	157.0	143.0	136.2	104.6	60.6	51.2	29.4	24.4	11.4
Solid state ^d	167.8	160.5	151.9	159.3	142.0	136.8	107.6	60.6	49.3	29.4	27.6	12.9
	N(3)	N	(1′)	N(3′)	N(4	(α) Ι	13 Cd(W ₁	(2)				
D_2O/H_2O solution $(1 \cdot 2)^e$	- 143	7 —	139.9	- 168.6	- 29	7.2 1	00.3 (21	7)				
Solid state						_	177.3					

" δ in ppm.

^b Referred to external dioxane (67.3 ppm).

^c Attributable to C(2)--D; t = triplet

^d Referred to external glycine (176.25 ppm).

^e Referred to external CH₃NO₂ neat.

ence outweighs any possible change in the cadmium coordination number.

Acknowledgement—We acknowledge financial support of this work by the Xunta de Galicia, Spain.

REFERENCES

- 1. R. E. Cramer, R. B. Maynard and J. A. Ibers, J. Am. Chem. Soc. 1981, 103, 76.
- 2. K. Aoki, H. Yamazaki and A. Adeyemo, *Inorg. Chim. Acta* 1991, **180**, 117.
- J. S. Casas, E. E. Castellano, M. D. Couce, A. Sánchez, J. Sordo, J. M^a. Varela and J. Zukerman-Schpector, *Inorg. Chem.* 1995, in press.
- (a) B. A. Frenz, in *Computing in Crystallography* (Edited by H. Schenk, R. Olthof-Hazekamp, H. Van Koningsveld and G. C. Bassi), pp. 64–71, V. 2.2, Delft University Press, Delft. (b) N. Walker and D. Stuart, *Acta Cryst.* 1983, A39, 158. (c) G. M. Sheldrick,

SHELXS86, University of Göttingen, Germany (1986). (d) J. A. Ibers and W. S. Hamilton (Eds), *International Tables for X-ray Crystallography*, Vol. IV. Kynoch Press, Birmingham (1974).

- M. F. Richardson, K. Franklin and M. D. Thompson, J. Am. Chem. Soc. 1975, 97, 3204.
- 6. D. G. Tuck, Rev. Inorg. Chem. 1979, 1, 209.
- 7. J. Pletcher, M. Sax, G. Blank and M. Wood, J. Am. Chem. Soc. 1977, **99**, 1396.
- 8. J. Pletcher, M. Wood, G. Blank, W. Shin and M. Sax, *Acta Cryst.* 1977, **B33**, 3349.
- 9. A. Bondi, J. Phys. Chem. 1964, 68, 441.
- P. G. Mennitt, M. P. Shatlock, V. J. Bartuska and G. E. Maciel, J. Phys. Chem. 1981, 85, 2087.
- 11. J. J. Ackerman, T. V. Orr, V. J. Bartuska and G. E. Maciel, J. Am. Chem. Soc. 1979, 101, 341.
- P. S. Marchetti, S. Blank, T. W. Bell, M. A. Kennedy and P. D. Ellis, J. Am. Chem. Soc. 1989, 111, 2063;
 I. G. Dance, R. G. Garbutt and D. C. Craig, Aust. J. Chem. 1986, 39, 1449.
- 13. E. Keller, SCHAKAL. University of Freiburg, Germany (1986).